DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR SIGNAL GENERATOR SG-1207/U (HEWLETT-PACKARD, MODEL 8642M)

Headquarters, Department of the Army, Washington, DC 26 November 2004

Distribution Statement A: Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to: Commander, US Army Aviation and Missile Command, AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our fax number is DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found back $_{
m this}$ the World ofmanual. For Wide Web, https://amcom2028.redstone.army.mil.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION Test instrument identification Forms, records, and reports Calibration description	1 2 3	2 2 2
	II.	EQUIPMENT REQUIREMENTS Equipment required	$\frac{4}{5}$	4 4
	III.	CALIBRATION PROCESS Preliminary instructions Equipment setup Line stability Frequency accuracy RF output Output level flatness Attenuation Spectral purity Pulse modulation Amplitude modulation Frequency modulation Phase modulation Internal oscillator Power supply Final procedure	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	5 5 6 6 7 8 9 10 11 13 14 16 17 18

^{*}This bulletin supersedes TB9-6625-2182-35, dated 29 October 2001, including all changes.

SECTION I IDENTIFICATION AND DESCRIPTION

- 1. **Test Instrument Identification.** This bulletin provides instructions for the calibration of Signal Generator, SG-1207/U (Hewlett-Packard, Model 8642M). TM 11-6625-3165-14 was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
 - a. Model Variations. None.
- **b. Time and Technique**. The time required for this calibration is approximately 6 hours, using the dc and low frequency and microwave technique.
- **2.** Forms, Records, and Reports. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
- **3.** Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Table 1. Cambration Description			
Test instrument parameters	Performance specifications		
Frequency	Range: 100 kHz to 2000 MHz		
	Accuracy: ±10 PPM		
	Time stability: +0.05 PPM/hour ¹		
	Line stability: ±0.05 PPM, 10% line change ²		
RF output	Range: >15 to -140 dBm ³		
_	Flatness: ±1.5 dB (100 kHz to 500 MHz)		
	<u>+2</u> dB (500 to 1000 MHz)		
	<u>+</u> 2.5 dB (1 to 2 GHz)		
	Attenuator accuracy: ±2.0 dB		
Spectral purity	Harmonics range Accuracy		
	100 kHz to 1057.5 MHz <+13 dBm, <-25 dBc		
	1057.5 to 2000 MHz <+7 dBm, <-25 dBc		
	Sub harmonic range Accuracy		
	100 kHz to 1057.5 MHz <-100 dBc		
	1057.5 to 2000 MHz <-45 dBc		
	Spurious signal range Accuracy		
	100 kHz to 132.1875 MHz <-70 dBc		
	132.1875 to 1057.5 MHz <-90 dBc		

See footnote at end of table.

Table 1. Calibration Description - Continued			
Test instrument parameters	Performance specifications		
Pulse modulation	Pulse range: 10 to 2000 MHz		
	Pulse rate: Dc to 50 kHz		
	Pulse envelope on/off ratio Accuracy		
	(10 to 2000 MHz) >40 dB		
	Pulse envelope rise/falltime <0.5 microsecond		
	(10% to 90%)		
Amplitude modulation	Frequency range: 100 kHz to 1057.5 MHz		
	Depth: 0 to 99.9% in .1% increments		
	Accuracy: $\pm 5\%$ of setting +1%		
	Distortion: <1.5%, 0 to 30% depth, 1 kHz rate		
	<3%, 30 to 70% depth, 1 kHz rate		
	<5%, 70 to 90% depth, 1 kHz rate		
	Incidental FM: <200 Hz (30% at 1 kHz)		
Frequency modulation	Frequency Response: Dc to 100 kHz external, 20 Hz		
	to 100 kHz internal in 1% increments		
	Deviation range: (Modulating rate between dc and 100 kHz		
	Accuracy: ≤300 kHz (30 to 132.1875 MHz)		
	≤375 kHz (132.1875 to 528.75 MHz)		
	≤1.5 MHz (528.75 MHz & above)		
	Incidental AM: <0.3% (>400 kHz carrier, 20 kHz peak deviation,		
	1 kHz rate)		
	Distortion: ≤4% for maximum dc coupled deviation		
	≤2% for 1/2 maximum dc coupled deviation		
	≤0.4% for 1/15 maximum dc coupled deviation		
	(for a modulating rate between 20 Hz and 100 kHz)		
	Indicator range: (Rates 20 Hz to 100 kHz)		
	Accuracy: ±(5% of setting +10 Hz)		
Phase modulation	Maximum deviation: 100 radians, 100 kHz to 132.1875 MHz		
	25 radians, 132.1875 to 264.375 MHz		
	50 radians, 264.375 to 528.75 MHz		
	100 radians, 528.75 to 1057.5 MHz		
	200 radians, 1057.5 to 2000 MHz		
	Accuracy: ±(5% of setting +0.09 radians) 1 kHz rate		
	Distortion: <0.4% at 1 kHz rate		
Internal oscillator	Frequency Range: 20 Hz to 100 kHz		
	Accuracy: ±2% of setting		
	Distortion: <0.02%, 20 Hz to 15.8 kHz		
	(>0.5 V peak) <0.15%, 15.8 to 100 kHz		

¹Time stability not verified due to insufficient environmental control.

 $^{^2\}mathrm{Line}$ stability verified to 8.7% line change.

 $^{^3\}mathrm{Range}$ verified to -110 dBm.

SECTION II EQUIPMENT REQUIREMENTS

- 4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provided a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment is shown in parenthesis.
- **5.** Accessories Required. The accessories required for the calibration are common usage accessories, issued as indicated in paragraph 4 above, and are not listed in this calibration procedure. The following peculiar accessories are also required for the calibration: Semiconductor Device (coaxial crystal detector), Hewlett-Packard, Model 423AOPT03.

Table 2. Minimum Specifications of Equipment Required

	Table 2. Minimum Specifications of Equipment Required				
		Manufacturer and model			
Common name	Minimum use specifications	(part number)			
AUDIO ANALYZER	Frequency measurement:	Boonton, Model 1121 (1121)			
	Range: 20 Hz to 100 kHz				
	Accuracy: ±0.5%				
	Distortion capability: ≤.02%				
AUTOTRANSFORMER	Range: 105 to 125 V ac	Ridge, Model 9020A (9020A)			
FREQUENCY	Range: 20 Hz to 1900 MHz	Fluke, Model PM6681/656			
COUNTER	Accuracy: <u>+</u> 2.5 ppm or .00025%	(PM6681/656)			
MEASURING	Power measurement: (+15 dB to -110 dB) ±.5 dB	Hewlett-Packard, Model 8902A			
RECEIVER	Flatness measurement:	w/sensor module, Hewlett-Packard,			
	(100 kHz to 450 MHz) <u>+</u> .375 dB	Model 11722A (11722A)			
	(550 MHz to 950 MHz) <u>+</u> .5 dB				
	(1500 MHz to 2000 MHz) <u>+</u> .625 dB				
MULTIMETER	Range: 50 to -15 V dc	Fluke, Model 8840A/AF05			
	Accuracy: <u>+</u> .25%	(AN/GSM-64D)			
OSCILLOSCOPE	Range: 50 Hz	(OS-303/G)			
	Accuracy: <125 ns risetime				
PULSE GENERATOR	Amplitude: 5 V	LeCroy, Model 9210 (9210)			
	Period: 10 ms to 20 μs	w/plug-ins, LeCroy, Model 9211			
	Width: 5 ms to 6 μs	(9211)			
SPECTRUM ANALYZER	Range: 450 kHz to 2 GHz (13 to -90 dB)	(AN/USM-677)			
	Accuracy: ±1.0 dB/10 dB step, 1.0 dB maximum				

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

- a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.
- c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in TM 11-6625-3165-14 for this TI.
- d. When indications specified in paragraphs 7 through 18 are not within tolerance, perform the power supply check prior to making adjustments. After adjustments are made, repeat paragraphs 7 through 18. Do not perform power supply check if all other parameters are within tolerance.
 - e. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

NOTE

Before connecting TI, the protective earth terminal of the instrument must be connected to the protective conductor of the line power cord. The line plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two-conductor outlet is not sufficient protection.

NOTE

When indications specified in this procedure are not within tolerance, perform the power supply check prior to making adjustments.

- a. Connect TI to autotransformer.
- **b**. Connect autotransformer to a 115 V ac source and adjust autotransformer to 115 V ac.
- c. Set TI POWER switch to ON and allow at least 30 minutes for to stabilize.

8. Line Stability

a. Performance Check

- (1) Connect frequency counter input A to TI **OUTPUT RF**.
- (2) Set up frequency counter to read frequency.
- (3) Press TI pushbuttons as listed in (a) through (c) below:
 - (a) INSTR PRESET.
 - (b) **ENTRY AMPTD**.
 - (c) DATA 0 dBm.
- (4) Record frequency counter indication.
- (5) For each row in table 3, vary autotransformer voltage. Frequency counter will indicate within limits specified in table 3 of the recorded value in (4) above.

Table 3. Line Stability

Table 6. L	mic buabiny
Autotransformer	Frequency counter
voltage	indication at 100 MHz
indications	±(Hz)
125 Vac	5
120 Vac	5
110 Vac	5
105 Vac	5

- (6) Adjust autotransformer to 115 V ac.
- **b.** Adjustments. No adjustments can be made.

9. Frequency Accuracy

a. Performance Check

(1) For each row in table 4, press TI **ENTRY - FREQ** pushbutton and enter **DATA** frequency. Frequency counter will indicate within the limits specified.

Table 4. Frequency

Test instrument	Frequency counter			
DATA	indications			
frequency	Min		Max	
100 kHz	99.999	kHz	100.001	kHz
500 kHz	499.995	kHz	500.005	kHz
1 MHz	999.990	kHz	1.000010	MHz
5 MHz	4.99995	MHz	5.000050	MHz
10 MHz	9.999900	MHz	10.000100	MHz
50 MHz	49.999500	MHz	50.000500	MHz
100 MHz	99.999000	MHz	100.001000	MHz

- (2) Press **RF OFF/ON** pushbutton to **OFF**.
- (3) Move connection on frequency counter from input **A** to input **C**.
- (4) Press RF OFF/ON pushbutton to ON.
- (5) For each row in table 5, press TI **ENTRY FREQ** pushbutton and enter **DATA** frequency. Frequency counter will indicate within the limits specified.

Table 5. Frequency

Test instrument DATA		y counter ations
frequency	Min	Max
500 MHz	499.995000	500.005000
1300 MHz	1299.987000	1300.013000
1900 MHz	1899.981000	1900.019000

- (6) Press RF OFF/ON pushbutton to OFF.
- (7) Disconnect equipment setup.
- **b.** Adjustments. No adjustments can be made.

10. RF Output

a. Performance Check

- (1) Set measuring receiver as listed in (a) through (f) below:
 - (a) Connect sensor module to measuring receiver.
 - (b) Zero, calibrate, and save sensor values.
 - (c) Press INSTR PRESET pushbutton.
 - (d) Press **LOG/LIN** to **LOG** (dBm) pushbutton.
 - (e) Enter **32.0 SPCL** (0.01 dB resolution).
 - (f) Connect sensor module to TI **OUTPUT RF** connector.
- (2) Connect TI 10 MHz OUT (rear panel) to measuring receiver 10 MHz IN (rear panel).
- (3) Press TI pushbuttons as listed in (a) through (c) below:
 - (a) INSTR PRESET.
 - (b) ENTRY FREQ.
 - (c) **DATA 30 MHz**.

(4) Press TI **ENTRY** – **AMPTD** pushbutton and enter **DATA** amplitude for each row in table 6. Using measuring receiver and RF power measurement techniques, measured power will indicate within limits specified.

Table 6. RF Output

Table 6. RF Output				
		Measuring receiver		
Test ins	strument	indications		
DA	ATA	(dE	Bm)	
amp	litude	Min	Max	
15	dBm	13	17	
10	dBm	8	12	
5	dBm	3	7	
0	dBm^1	2	-2	
-10	dBm	-8	-12	
-20	dBm	-18	-22	
-30	dBm	-28	-32	
-40	dBm	-38	-42	
-50	dBm	-48	-52	
-60	dBm	-58	-62	
-70	dBm	-68	-72	
-80	dBm	-78	-82	
-90	dBm	-88	-92	
-100	dBm	-98	-102	
-110	dBm	-108	-112	

¹Setup measuring receiver for tuned RF level cal techniques and wait for receiver to calibrate.

- (5) Press **RF OFF/ON** pushbutton to **OFF**.
- b. Adjustments. No adjustments can be made.

11. Output Level Flatness

a. Performance Check

- (1) Set measuring receiver with sensor module to measure RF power in logarithmic mode, then select the 0.01 dB mode using special function 32.0.
 - (2) Press pushbuttons ENTRY AMPTD and DATA (+10 dBm).
- (3) Measure and record the RF power using the measuring receiver, while using the **ENTRY FREQ** key and the **DATA** key pad to select frequencies between the start and stop frequencies listed in table 7.
- (4) Calculate the flatness using the formula below. The flatness will be less than or equal to the maximum limits listed in table 7.

Flatness = (highest - lowest)/2

(5) Repeat technique of (3) and (4) above for remaining rows in table 7.

Table 7. Output Level Flatness

Start frequency	Stop frequency	Calculated flatness	Maximum limit
(Hz)	(Hz)	(dB)	±(dB)
100 k	450 M		1.5
550 M	950 M		2
1200 M	2000 M		2.5

- (6) Press RF OFF/ON pushbutton to OFF.
- **b.** Adjustments. No adjustments can be made.

12. Attenuation

a. Performance Check

- (1) Press TI pushbuttons as listed in (a) through (c) below:
 - (a) INSTR PRESET.
 - (b) ENTRY AMPD.
 - (c) DATA 0dBm.
- (2) Set measuring receiver with sensor module to measure tuned RF level in logarithmic mode, then select 0.01 dB mode using special function 32.0.
 - (3) Press measuring receiver **CALIBRATE**, and **SET REF** keys.
- (4) Press TI **ENTRY AMPTD** pushbutton and enter **DATA** amplitude for each row in table 8. Using measuring receiver and tuned RF level power measurement techniques measuring receiver will indicate within limits specified.

NOTERECAL (CALIBRATE) as necessary.

Table 8. Attenuator at 100 MHz

Test instrument	Measuring receiver indications	
DATA	(dBm)	
amplitude		
(dBm)	Min	Max
-10	-8	-12
-20	-18	-22
-30	-28	-32
-40	-38	-42
-50	-48	-52
-60	-58	-62
-70	-68	-72
-80	-78	-82
-90	-88	-92
-100	-98	-102
-110	-108	-112

- (5) Press **RF OFF/ON** pushbutton to **OFF**.
- (6) Disconnect measuring receiver from TI **OUTPUT RF**.
- **b.** Adjustments. No adjustments can be made.

13. Spectral Purity

a. Performance Check

- (1) Connect spectrum analyzer **INPUT 50** Ω to TI **OUTPUT RF**.
- (2) Connect TI **EXT REF INPUT** (rear panel) to spectrum analyzer **10 MHz REF OUT** (rear panel).
 - (3) Press INSTR PRESET pushbutton.
 - (4) Perform steps as listed in (a) through (c) below for each row in table 9 below:
 - (a) Press **ENTRY FREQ** pushbutton and enter **DATA** frequency listed.
 - (b) Press **ENTRY AMPTD** pushbutton and enter **DATA** amplitude listed.
- (c) Set spectrum analyzer to TI frequency, set power reference then tune to harmonic frequency listed. Power amplitude will be less than dBc specified limit.

NOTE

Some spurious signals may be generated by the spectrum analyzer. If a spurious signal is present, change TI frequency. If it disappears, it most likely is from the TI. If the spurious signal moves with the TI frequency it most likely is in the spectrum analyzer.

Table 9. Spectral Purity

rable b. Spectral Farry				
Test instrument		Spectrum analyzer		
DATA	DATA	Harmonic		
amplitude	frequency	frequency		
(dBm)	(MHz)	(MHz)	dBc	
5	.450	.900	<-25	
5	.450	1.35	<-25	
5	1	2	<-25	
5	1	3	<-25	
5	1.5	3	<-25	
5	166.666667	333.333333	<-25	
5	166.666667	500	<-25	
5	250	500	<-25	
5	333.333333	666.666666	<-25	
5	333.333333	1000	<-25	
5	500	1000	<-25	
5	2000	4000	<-45	
5	2000	1000	<-25	

- (5) Perform steps as listed in (a) through (c) below for each row in table 10 below.
 - (a) Press ENTRY FREQ pushbutton and enter DATA frequency listed.
 - (b) Press ENTRY AMPTD pushbutton and enter DATA amplitude listed.
- (c) Set spectrum analyzer to TI frequency, set power reference then tune to harmonic frequency listed. Power amplitude will be less than dBc specified limit.

Table 10. Spurious Signals

Table 10. Spurious Signais				
Test instrument		Spectrum and	alyzer	
DATA	DATA	Harmonic		
amplitude	frequency	frequency		
(dBm)	(MHz)	(MHz)	dBc	
20	4.130000	85.870000	<-70	
20	4.130000	3.700000	<-70	
20	4.130000	0.430000	<-70	
20	4.130000	4.560000	<-70	
20	4.130000	5.870000	<-70	
20	4.130000	45.000000	<-70	
20	4.130 000	225.000 000	<-70	
20	90.000 000	112.500 000	<-70	
20	600.000 000	596.313 600	<-90	
20	600.000 000	599.078 400	<-90	
20	571.144000	572.796000	<-90	
20	610.519000	612.171000	<-90	
20	745.951000	747.608000	<-90	
20	775.184.000	776.836000	<-90	
20	780.184000	781.840000	<-90	
20	797.878000	799.536000	<-90	
20	965.416000	967.076000	<-90	
20	1012.000000	788.000000	<-90	
20	976.000000	742.500000	<-90	
20	562.000000	606.500000	<-90	
20	563.000000	540.500000	<-90	
20	1057.500000	1012.500000	<-90	
20	1057.500000	1057.375000	<-90	

- (6) Press RF OFF/ ON pushbutton to OFF.
- **b.** Adjustments. No adjustments can be made.

14. Pulse Modulation

a. Performance Check

- (1) Connect pulse generator, with plug-in module (9211) **OUTPUT A** to TI **PULSE IN** (rear panel).
 - (2) Press pulse generator pushbuttons for a pulse output as listed in (a) through (h) below.
 - (a) CHANNEL A.
 - (b) **Period** and enter **10 m/kHz** from data keyboard.
 - (c) Width and enter 5 m/kHz from data keyboard.
 - (d) Vhigh and 5 ENTER/HZ from data keyboard.
 - (e) Vlow and 0 ENTER/HZ from data keyboard.
 - (f) **Delay** and enter **0** n/GHz from data keyboard.
 - (g) 2 Pulse and OFF ENTER/Hz from data keyboard.

- (h) On plug-in output module, 9211, **Disable** red (off) light.
- (3) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) INSTR PRESET.
 - (b) ENTRY FREQ.
 - (c) **DATA 1 GHz**.
 - (d) ENTRY AMPTD.
 - (e) DATA (+10 dBm).
 - (f) SHIFT.
 - (g) ENTRY PULSE.
 - (h) MODULATION SOURCE EXT DC.
- (4) Press spectrum analyzer pushbuttons as listed in (a) through (d) below:
 - (a) Preset.
 - (b) AMPLITUDE, Ref Level, 1, 0, dBm.
 - (c) FREQUENCY, Center Freq, 1, GHz.
 - (d) SPAN, 1, ., 5, MHz.
- (5) Press **ENTRY OFF/ON** pushbutton to pulse **ON**.
- (6) Press spectrum analyzer pushbuttons as listed in (a) through (i) below:
 - (a) BW/Avg, Res BW, 1, 0, 0, kHz.
 - (b) Video BW, 1, kHz.
 - (c) MARKER.
 - (d) SPAN, 0, Hz.
 - (e) Sweep, Sweep Time, 3, 0, ms.
 - (f) TRIG, Video, 1, 0, -dBm.
 - (g) Adjust marker to top of squarewave.
 - (h) Marker, Delta.
 - (i) Adjust delta marker to bottom of squarewave.
- (7) Using spectrum analyzer, measure top to bottom of square wave in dB. Pulse envelope on/off ratio will indicate within limits specified in table 11.

Table 11. Pulse Modulation On/Off Ratio

Spectrum analyzer
> dB
40

- (8) Press **RF OFF/ON** to **OFF** pushbutton.
- (9) Disconnect TI EXT REF INPUT (rear panel) from spectrum analyzer.
- (10) Disconnect TI OUTPUT RF from spectrum analyzer.
- (11) Connect oscilloscope Vertical 1 input to TI OUTPUT RF, using crystal detector.
- (12) Adjust pulse generator output for a period of 20 ms and a width of 6 ms.
- (13) Press **RF OFF/ON** to **ON** pushbutton.

(14) Using oscilloscope measurement techniques, verify that the risetime of displayed envelope is within limits listed in table 12.

Table 12. Pulse Modulation Risetime

Table 12. Tuise Modulation Hisetime		
Oscilloscope indication		
< u Sec		
0.5		

(15) Using oscilloscope measurement techniques, verify that the falltime of displayed envelope is within limits listed in table 13.

Table 13. Pulse Modulation Falltime

Oscilloscope
< u Sec
0.5

- (16) Press RF OFF/ON pushbutton to OFF.
- (17) Disconnect pulse generator and oscilloscope from circuit.
- **b.** Adjustments. No adjustments can be made.

15. Amplitude Modulation

- a. Performance Check
 - (1) Connect measuring receiver with sensor module to TI **OUTPUT RF**.
 - (2) Connect **OUTPUT MOD** to **INPUT AM**.
- (3) Connect measuring receiver **MODULATION OUTPUT/AUDIO INPUT** to audio analyzer **INPUT HIGH**.
 - (4) Press TI pushbuttons as listed in (a) through (m) below.
 - (a) INSTR PRESET.
 - (b) ENTRY FREQ.
 - (c) **DATA 1 GHz**.
 - (d) ENTRY AMPTD.
 - (e) **DATA (+13 dBm)**.
 - (f) ENTRY AM.
 - (g) DATA 30%.
 - (h) MODULATION SOURCE EXT DC.
 - (i) ENTRY MOD FREQ.
 - (j) **DATA 1 kHz**.
 - (k) SHIFT.
 - (l) ENTRY MOD OUT.
 - (m) DATA (+1V).
- (5) Set measuring receiver to measure FM with a 300 Hz high pass filter and a 3 kHz low pass filter.
 - (6) Measuring receiver will indicate within limits specified in table 14.

Table 14. Incidental FM

			Measuring		
Carrier	Modulation	Modulation	receiver		
frequency	rate	%	<hz< td=""></hz<>		
1 GHz	1 KHz	30	200		

- (7) Set measuring receiver to measure AM with a low pass filter of 15 kHz.
- (8) Set audio analyzer to measure distortion.
- (9) Press TI **ENTRY AM** pushbutton and enter **DATA** percent of modulation for each row in table 15. Using measuring receiver, measure the AM percent of modulation indication will be within limits specified.

Table 15. AM accuracy at 1 kHz Modulation

Table 19. This accuracy at 1 kHz Modulation				
Test instrument	Measuring receiver modulation			
DATA	indications			
percent of	(%)			
modulation				
	Min	Max		
30%	27.5	32.5		
60%	56	64		
90%	84.5	95.5		

(10) Press TI **ENTRY** – **AM** pushbutton and enter **DATA** percent of modulation for each row in table 16. Using audio analyzer, measure the AM distortion; indication will be within limits specified.

Table 16. AM Distortion at 1 kHz Modulation

Test instrument	Audio analyzer
DATA percent of	distortion indications
modulation levels	(<%)
30%	1.5
60%	3
90%	5

- (11) Press **RF OFF/ON** pushbutton.
- **b.** Adjustments. No adjustments can be made.

16. Frequency Modulation

- a. Performance Check
 - (1) Disconnect **OUTPUT MOD** from **INPUT AM** and connect to **INPUT FM/ΦM**.
 - (2) Press TI pushbuttons as listed in (a) through (m) below.
 - (a) INSTR PRESET.
 - (b) ENTRY FREQ.
 - (c) **DATA 1 GHz**.
 - (d) ENTRY AMPTD.
 - (e) **DATA (+13 dBm)**.

- (f) ENTRY FM.
- (g) **DATA 20 kHz.**
- (h) MODULATION SOURCE EXT DC.
- (i) MOD FREQ.
- (j) **DATA 1 kHz**.
- (k) SHIFT.
- (l) ENTRY MOD OUT.
- (m) DATA (+1V).
- (3) Set measuring receiver to measure AM with a 300 Hz high pass filter and a 3 kHz low pass filter.
 - (4) Measuring receiver will indicate within limits specified in table 17.

Table 17. Incidental AM

Table 17. Illicidental Alvi					
			Measuring		
		Peak	receiver		
Carrier	Modulation	deviation	indication		
frequency	rate	kHz	< %		
1 GHz	1 kHz	20	0.3		

- (5) Set measuring receiver to measure FM with all filters off.
- (6) Set audio analyzer to measure distortion.
- (7) Press TI pushbuttons as listed in (a) through (f) below:
 - (a) ENTRY FREQ.
 - (b) **DATA 250 MHz**.
 - (c) ENTRY AMPTD.
 - (d) **DATA (+10 dBm)**.
 - (e) ENTRY FM.
 - (f) **DATA 300 kHz**.
- (8) Press **ENTRY MOD FREQ** pushbutton and enter **DATA** modulated frequency for each row listed in table 18. Distortion measurement on audio analyzer will indicate within limits specified.

Table 18. Audio FM Distortion

Test instrument DATA	Audio analyzer distortion indications	
modulated frequency	≤ (%)	
20 Hz	2	
400 Hz	2	
1 kHz	2	
100 kHz	2	

- (9) Perform steps (a) through (d) below for each row in table 19:
 - (a) Press TI ENTRY FREQ pushbutton and enter DATA carrier frequency as listed.
- (b) Press TI **ENTRY MOD FREQ** pushbutton and enter **DATA** modulation frequency as listed.

- (c) Press TI **ENTRY FM** pushbutton and enter **DATA** frequency modulation as listed.
- (d) Using measuring receiver, measure FM deviation. Measuring receiver deviation will indicate within limits specified in table 19.

Table 19. FM Deviation

		Modulation analyzer indications		
	Test instrument	(kHz deviations)		
	DATA			
DATA carrier	DATA carrier modulation DATA			
frequency	frequency	modulation (FM)		
(MHz)	(kHz)	(kHz)	Min	Max
1050	100	100	95	105
256	100	25	23.7	26.3
256	100	187	177.6	196.4
256	100	375	356.2	393.8
50	10	150	142.5	157.5

b. Adjustments. No adjustments can be made.

17. Phase Modulation

a. Performance Check

- (1) Set measuring receiver to measure FM with a 300 Hz high pass filter and a 15 kHz low pass filter.
 - (2) Set audio analyzer to measure distortion.
 - (3) Press TI pushbuttons as listed in (a) through (k) below:
 - (a) INSTR PRESET.
 - (b) ENTRY AMPTD.
 - (c) DATA (+10 dBm).
 - (d) SHIFT.
 - (e) $ENTRY \Phi M$.
 - (f) MODULATION SOURCE EXT DC.
 - (g) ENTRY MOD FREQ.
 - (h) **DATA 1 kHz**.
 - (i) SHIFT.
 - (j) ENTRY- MOD OUT.
 - (k) **DATA (+1 V)**.
 - (4) Perform steps (a) through (c) below for each row in table 20.
 - (a) Press **ENTRY FREQ** and enter **DATA** carrier frequency.
 - (b) Press **SHIFT** Φ **M** and enter **DATA** rad.
- (c) Set the measuring receiver to measure the PM. Phase modulation will indicate within limits specified.

Table 20. PM Accuracy

	Test instrument	Test instrument	Measuring receiver phase	
	DATA carrier	DATA phase	modulation indications (ra	
	frequency	modulation	Min	Max
	8 MHz	75 rad	71.2	78.8
	$1050 \mathrm{MHz}$	100 rad	94.9	105.1
	500 kHz	100 rad	94.9	105.1

- (5) Perform steps (a) through (c) below for each row in table 21.
 - (a) Press **ENTRY FREQ** and enter **DATA** carrier frequency.
 - (b) Press **SHIFT ΦM** and enter **DATA** rad.
- (c) Using audio analyzer, measure the audio distortion. Distortion will indicate within limits specified.

Table 21. Audio Distortion at 1 kHz Modulation Frequency

Test instrument	Test instrument	Audio analyzer
DATA	DATA	distortion indications
carrier frequency	phase modulation	(< %)
8 MHz	75 rad	0.4
1050 MHz	100 rad	0.4
500 kHz	100 rad	0.4

- (6) Press **RF OFF/ON** pushbutton to **OFF**.
- (7) Disconnect measuring receiver from TI **OUTPUT RF**.
- **b.** Adjustments. No adjustments can be made.

18. Internal Oscillator

- a. Performance Check
 - (1) Connect TI **OUTPUT MOD** to audio analyzer **INPUT HIGH**.
 - (2) Press TI pushbuttons as listed in (a) through (d) below:
 - (a) INSTR PRESET.
 - (b) SHIFT.
 - (c) ENTRY MOD OUT.
 - (d) **DATA (+1 V)**.
- (3) Press TI **ENTRY MOD FREQ** pushbutton and enter **DATA** modulated frequency for each row in table 22. Set audio analyzer to measure distortion. Audio analyzer will indicate within limits listed in table 22.

Table 22.	Internal	Oscillator	Distortion

Test instrument DATA	Audio analyzer distortion indications
modulated frequency	<(%)
20 Hz	0.02
100 Hz	0.02
1 kHz	0.02
10 kHz	0.02
15 kHz	0.02
30 kHz	0.15
100 kHz	0.15

(4) Press TI **ENTRY – MOD FREQ** pushbutton and enter **DATA** modulated frequency for each row in table 23. Set audio analyzer to measure frequency. Audio analyzer will indicate within limits listed in table 23.

Table 23. Internal Oscillator Frequency

		1 /	
Test instrument	Audio analyzer		
DATA	indications		
modulated	(Hz)		
frequency			
settings	Min	Max	
20 Hz	19.6	20.4	
100 Hz	98	102	
1 kHz	980	1020	
10 kHz	9800	10200	
50 kHz	49000	51000	
100 kHz	98000	102000	

- (5) Disconnect audio analyzer from TI OUTPUT MOD.
- **b.** Adjustments. No adjustments can be made.

19. Power Supply

a. Performance Check

NOTE

Do not perform power supply check if all other parameters are within tolerance.

- (1) Deenergize TI and remove top cover.
- (2) Set **POWER** switch **ON** and allow sufficient time to warm-up.
- (3) Connect multimeter **HI INPUT** to test points listed in table 24 and connect **LO INPUT** to chassis ground.
 - (4) If multimeter does not indicate within specifications listed in table 24, perform **b** below:
 - (5) Remove test leads and deenergize TI.
 - (6) Replace TI cover.

b. Adjustments

NOTE

Turn adjustment screw next to test points listed in table 24.

Table 24. Power Supply

Test point		Adjust to read V dc (R)		
(HI INPUT)	Adjustments	Min	Max	
A17TP1	A17R18	+14.85	+15.15	
A17TP2	A17R36	-14.85	-15.15	
A17TP3	A17R53	+5.148	+5.252	
A17TP4	A17R66	-5.148	-5.252	
A17TP5	A17R76	+49.50	+50.50	

20. Final Procedure

- a. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

By Order of the Secretary of the Army:

PETER J. SCHOOMAKER General, United States Army Chief of Staff

Official:

SANDRA R. RILEY

Administrative Assistant to the

Secretary of the Army

0427402

Distribution:

To be distributed in accordance with the initial distribution number (IDN) 342267, requirements for calibration procedure TB 9-6625-2182-35.

Instructions for Submitting an Electronic 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@redstone.army.milT

To: <2028@redstone.army.mil

Subject: DA Form 2028 1. **From**: Joe Smith

2. Unit: home

Address: 4300 Park
 City: Hometown

5. St: MO6. Zip: 77777

7. **Date Sent**: 19-OCT -93 8. **Pub no**: 55-2840-229-23

9. Pub Title: TM

10. Publication Date: 04-JUL-85

11. Change Number: 7
12. Submitter Rank: MSG
13. Submitter FName: Joe
14. Submitter MName: T
15. Submitter L Name: Smith

15. Submitter LName: Smith

16. **Submitter Phone**: 123-123-1234

17. **Problem**: 1 18. Page: 2 19. Paragraph: 3

20. Line: 421. NSN: 522. Reference: 623. Figure: 724. Table: 8

25. Item: 926. Total: 123

27. **Text**

This is the text for the problem below line 27.

PIN: 063109-000